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i ABSTRACT
The paper is concerned with the asymptotic behavior as t » « of solutions
u(x,t) of the equation

’

v, - uxx - fi(u) =m0, X € (=n,»)
in the case f(0) = f(1) = 0 , with f(u) non-positive for u(>) sufficiently

{ - close to zero and f (u) non-negative for u(<l) sufficiently close to 1 . This

guarantees the uniqueness (but not the existence) of a travelling front solution

u= U(x - ct), U(=w) = 0, U(x) =1 , and it is shown in essence that solutions

with monotonic initial data converge to a translate of this travelling front if it
exists, and to a “"stacked" comhination of travelling fronts if it does not. The
approach is to use the monotonicity to take u and t as independent variables

and p = u, as the dependent variable, and apply ideas of sub- and super-solutions

to the diffusion equation for p
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SIGNIFICANCE AND EXPLANAT ION

M ;
r The nonlinear diffusion equation stated in the Abstract appears 2
‘E : in numerous applications, for example combustion theory, population E
: genetics, signal propagation in nerves, and other chemical and biological ;
1 situations. A central question is the patterm into which the solution

F' develops with increasing time.

The type of result obtained in this paper is that if a steady-state
travelling-wave solution exists, and if the function f in the nonlinear
’ diffusion equation in the Abstract has a certain form, then the solution
of the problem with steadily increasing or decreasing initial data will

3 tend to the travelling-wave solution for sufficiently large times.

s el R . i

The responsibility for the wording and views expressed in this descriptive i
summary lies with MRC, and not with the authors of this report. !
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A PHASE PLANE DISCUSSION OF CONVERGENCE
TO TRAVELLING FRONTS FOR NONLINFAR DIFFUSION
Paul C. Fife and J. B. Mcleod

Introduction

This paper is by way of being an alternative account of the problems discussed by us
in an earlier paper [2]. The results are of the same general nature, but they differ in
certain details, and the proofs are quite different. To set the scene we start by re-
calling the main results from (2], but we do this quite briefly and refer the reader to [2]
for further historical and bibliographical background. Two important papers which had not
appeared when [2] was written are those by Rothe (6] and Uchiyama (7], where the approach
taken has certain affinities to that in the present paper. In (7] it is appliedrather tothe
Kolmoqorov-r‘otrovski;-Piakunov case than to the case discussed by us. 1In [(0], convergence re-
sults are given both for the K-P=P case and for the case when f has one sign change, as in (2],

We are concernedwith the pure initial value problem for the nonlinear diffusion equation
(1.1) . T f(u) =0 (e <% «w > 0),
the initial value being, say,
(1.2) ul(x,0) = $(x) (=@ < x < ®),
The question of interest is the behavior as t * = of the solution ul(x,t), and in
particular under what circumstances it does (or does not) tend to a travelling front
solution, a travelling front being a solution of (1.1) of the form u = U(x = ct) for

some ¢ (the velocity), with the limits U(*~) existing and unequal. As in [2] we

will adopt the normalization that f « Cl with f£(0) = f(1) = 0 , so that u 0 and

u 1 are particular solutions of (1.1), and we take U(=~) = 0, U(+~) = 1. With these

assumptions on f , it is a standard result that if ¢ is pilecewise continuous and

0 < ¢(x) <1 for all x , then there exists one and only one bounded classical solution

u(x,t) of (1.1-2), and 0 <u(x,t) <1 for all x,t. We shall always make these

assumptions on ¢ and f , and shall be concerned only with this unique bounded solution.
Our main object in (2] was to show that, under minimal assumptions on ¢ , when

£'() <0, £'(1) < 0 , the solution converges uniformly to one of various types of

travelling tfront configurations. The three principal results in (2] are the following.

Sponsored by the United States Ammy under Contract No. DAAGIO-T65-C-0034,




Theorem A (Theorem 3.1 of (2]): Let f ¢ C'(0,1] satisfy £(0) = £(1) = 0 , £'(0) <o

£'(1) <0, f(u) <O t_'g}f_Oxu*uo,f(u)sO for a, <u <1, where 0 < a L e

1 0

Assume there exists a travelling front solution U of (1.1) with speed ¢ .

let ¢ saunf! 0:0:_1 ., and

(1.3) lim sup ¢(x) < ay lim inf ¢(x) > a

X *=-® X * =«

1

0
of (1.1-2) satisfies

lu(x,t) - U(x—ct-zoﬂ < ra~ %t

to this point later, but if f does satisfy these sufficient conditions, then of course
the existence assumption in the statement of Theorem A can be dropped. A particularly
important case is that of the degenerate Nagumo's equation, in which 94 = 9 . In this
case a travelling front does exist. Notice also that Theorem A certainly implies the
uniqueness of the travelling front (modulo transiation}.

Theorem A asserts that a solution which vaguely resembles a front at some initial
time will develop uniformly into such a front as t + =, "Vaguely resembles" simply
means that the solution is less than ao far to the left and greater than e far to
the same conclusion holds; the front will then face right rather than left, and will
travel in the opposite direction. This corresponds to the fact that the equation (1.1)
is invariant under the transformation x ® -x , but an increasing function of x be-
comes decreasing and a positive speed becomes a negative one.

There are also situations in which the solution will develop into a pair of such
fronts, moving in opposite directions. This is the gist of the second theorem .

Theorem B (Theorem 3.2 of {2]): let f satisfy the hypotheses of Theorem A, and in

addition

(1.4) Mewaso.
0

«ge

Then for some constants z , XK and w , th> last two positive, the solution u(x,t)

The existence of a travelling front is not guaranteed by the other conditions on f, although

sufficient conditions for its existence are contained in §2 of [2]. We shall be returning

the right. Of course, if the words "left" and "right" are interchanged in this statement,




Let ¢ satisty 0 < ¢ =~ 1, and

(1.5) Lim sup $(x) - a $x) > a +n for x| <% ,
x| >
where n and L are some positive numbers. Then if L 1is sufficiently large (depending
on n and f), we have for some constants xo,xl, X, and & (the last two positive),
lu(x,t) - U(x-ct-xo)( < xa . x <0,
(1.6) g
lul(x,t) - U(-x-ct-xlli SKE s x >0

The assumption (1.4) implies that a travelling front as we have defined it (i.e. an
increasing function) has speed ¢ negative and so moves to the left. This is proved in
(2.7) of (2], but it is an immediate consequence of multiplying by U' and integrating
over (-=,») the equation

U*“ + 0 0 + f{U) = 0
for the travelling front. The intuitive meaning of (1.6) is that the x-interval on which
u is near the value 1 is finite and is elongating in both directions with speed |e|
If the inequality in (1.4) is reversed, and appropriate changes in (1.5) are made, then
an analogous convergence result is still obtained but with the interval on which u is
near 0 elongating.

Finally, there is the case in which there does not exist a travelling front with
range (0,1). This can happen (in view of the existence of a travelling front for the
degenerate Nagumo's equation) only if f has more than one intermal zero. To each
triple of adjacent zeros with properties analogous to the zeros (0,q,1) of Nagumo's
equation there of course corresponds a travelling front with characteristic speed and
characteristic limits at +‘~. For simplicity consider the case of two adjacent triples
of this type (thus five zeros in all), and a solution of (1.1) with range equal to the

€1 be the two velocities,

ordered by increasing u . 1f G Y s W show in (2] that the solution will tend to

combined ranges of the two travelling fronts. Let Co'
split into two separate travelling fronts, becoming very flat for u near the center

zero of the five, and that there exists no simple travelling front with range from the
first to the fifth zero. If ¢ > Cl , however, there exists a unique such travelling

0
front, and this corresponds to the fact that in this case a splitting as described

-3




above would be conceptually impossible. More generally and more precisely, we prove

Theorem (Theorem 3.3 of [2)): Let !lu\) = 0 and f'm‘\ <0, i=1,2,3, wvhere
U, fu, <u . let there exist travelling fronts i‘x(x-c‘t) and l'z(x-czt\ with ranges
(ul.u“ and m‘,u‘) respectively. Assume e, *& - Let O be the least zero of ¢
greater than Wy and Q, the greatest zero less than u, - Suppose % X ¢ix) < v, and
lim sup dix) « a lim inf 2(x) » a
X L x * = -
Then there exist constants ‘l"-" X, and & , the last two positive, such that
lue,t) = U (x=c t=x.) = U (x-c t-x_) + u,| « ke *
juix, y (X texy 5 (X-c t-x, v, e

This implies, in particular, that

f uy for 8 <e ,

lim u(fit, t) = ) u for g <P ee, ,

tr ™
L Y tox Ca <8 »

The work in the present paper stems from two observations on these results. The
first 1s that it would be a useful extension to be able to drop the restrictions
a.m £'(0) <0, Q) 29 .

It 1s an immediate consequence of (1.7) that

" f£lw) <0 for u(> 0) sufficiently near 0 ,
(1.8) L

flu) >0 for u(s<l) sufficiently near 1 ,

and the conditions (1.8) are important in that it is proved in lemma 2.1 of (2] that they
Juarantee that, if a travelling front exists, then it is unigque (modulo translation).
Convergence results must be easier to prove when there is a unique limit for the conver-
gence, and so we retain (1.8) but drop (1.7). This allows us to consider, for example,
the equation discussed by Xanel' (4) for the combustion of certain gases, in which
f(u) 0 for ue (O,a), f(u) >0 for u ¢ (a,l).

The work in [2] depends crucially on the assumptions (1.7), and an altemative
approach is therefore required. The second observation is therefore that the concept of
monotanicity clearly has some significance in these results (it is proved in Lemma 0.1
of (2] that all travelling fronts are necessarily monotonic) and that it is a well-known
result that the monotonicity of ¢ in (1.2) implies that of the corresponding solution

ulx,t), as a function of x , for all t > 0 . (To prove this, differentiate (1.1) with

e




respect to X to obtain a diffusion equation for u and apply the comparison theorem
. in §1 of [2] to this diffusion mation, with zero as a subsolution, to show that u 3
X

This monotonicity allows one to take as independent variables the pair (u,t) instead of

g—

(x,t), and to use p = u as dependent variable. This transformation is discussed in 2.
X

e

8
As in [2), the principal tools used are comparison theorems for parabolic equations, f
) )3
P although the parabolic equation is now one for p in tems of u,t. The problem 1s some-
b what complicated by the fact that this parabolic equation is degenerate, in that the
. 2
coefficient of Py 38 0 and the boundary conditions demand that p vanishes at the
1
end-points (0,1) of the range for u . The necessary analysis to deal with this, and the
statements and proofs of the comparison theorems, are given in §3,

A typical theorem that results from this approach is the following. {

1
£ ' let f ¢ C [0.1) satisfy, for some a ¢ (0,1), £(0) = £(1) = 0 , £(u) <0 for

! 1
ue (0,a), £lu) ~ 0 for uw ¢ (a,1), ) £(u)du > 0. Then there exists a travelling front
o -

solution U(x-ct) of (1.1), unique modulo translation and necessarily monotonic,and

1 :
$ € C (==,®) with ¢(-=) =0 , ¢(+=) =), ¢'(x) >0 for all x , then there exists a

3 1 . 4
E function Yy ¢ C [0,®), with y'(t) =» 0 as t » « , such that, uniformly in x ,

.9 lu(x,t) = U(x-ct-y(t))| = o(1)

: as t »~ , where u is the solution of the initial value problem (1.1-2) corresponding

to the initial function ¢ . ¥

This result corresponds to Theorem A , in that the conditions imposed on f are ¢
sufficient to guarantee the existence of a travelling front. It can be generalized (as
in Theorem 4.4 in §4) to cover any f which satisfies any of the sufficient conditions
for the existence of a travelling front given in §2 of (2], or equivalently in Lemmas 2.5,
2.6 of the present paper. Theorem A in effect makes the existence of a travelling front
*- in itself sufficient for convergence, but we cannot reach that degree of generality here.
The result (1.9) is proved by first obtaining a convergence result in the transformed
3 variables (p,u,t) and then integrating back.
The convergence statement in (1.9) is much weaker than that in Theorem A. Not only

do we not have exponential convergence,we do not even have uniform convergence to a

specific travelling front. The solution takes up the correct "shape" asymptotically and




the correct speed, but since we know only that y'(t) * 0 as t = =, and not that y i)
Converges to a finite limit, we dO not know that there is a specific limiting travelling
front. This seems to be an inevitable consequence of relaxing the conditions t'(0) - 0,
£*Q1) ¢ 0

It 1s however possible to improve on (1.9), and to obtain convergence at an exponen-
tial rate to a specific travelling front, provided tlat one is prepared to make heavier
assumptions on ¢ . The essential point is that the initial function ¢(x) should be,
asymptotically in X as x » +« (if ¢ > 0) or as x *» -~ (if ¢ «0), “"sufficiently
close™ to a travelling front. The result is made precise and proved in 3l1.

Theorem B has no corresponding result in the present paper, since its hypotheses
preclude monotonicity of the initial function, but there are results corresponding to
Theorem C in the case where there is no travelling front with range (0,1).

Most of the convergence theorems are stated in 34, and then proved in §35-10. As
already remarked, 3ill contains more precise convergence results under heavier assump-
tions.

It should finally be remarked that although it is a hypothesis in the various con-
vergence theorems that the initial function ¢ 1is monotonic with ¢(-®) = 0 , ¢(ex) =1,
it is possible to extend the ideas and methods of the paper to initial functions ¢ which
are not monotonic or for which the limiting values $(*=) are not (0,1).

Thus if ¢ 1s monotonic but @ (-«) = q > 0 , then the corresponding initial function
in the transformed variables (p,u,t) 1is not defined for 0 <u < a , but it is con-
venient to take it to be identically zero. This makes the problem more degenerate since
the coefficient of P in the diffusion eguation now vanishes initially not merely at
u = 0,1, but throughout an interval of values of u . This difficulty is faced even in
the present paper since in §3 we have to construct for comparison purposes subsolutions
which vanish initially throughout an interval of values of u , and there is therefore no
essential difficulty in discussing initial functions ¢ with ¢(==) # 0 . For simplicity,
however, we have refrained from doing so,

To deal with initial functions ¢ which are not monotonic, we have to allow p ,
regarded as a function of u , to be multi-valued, and this has been investigated by
Chueh (1]. Again we will not pursue the matter further in this paper.

e
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F .o e basic transtormation g
wWe introduce the transtomation of the independent variables from (x,t) to (u,t) $
§
- with a lemma the contents of which are well-known but usefully recalled in this fomm. l
p
1 1
I_rli\{!\i:‘.l‘. ’_\_Y_ £ ¢ € 10,1}, with 0 = F{1) & 0 ., and :ux'l'u:n‘}b.ai € C (=w,%),
with < $ <1 anda ¢ 0 . Then the solution u of (1,1-2) satisfies, for t >0 ,
(2.1) uxlx,() 0 for all finite x
%
and
(2.2) Wite.t) = Q $
X i
Proot. We have already remarked in the intyoduction that (2.1) is a consequence of a
maximum or comparison principle applied to the diffusion equation for ux ¢ X.@, f
v &
(2.3) Y, = ) - fY(aju, - O #
x ¢t X XX
with ux(x.v\ *0 . Strictly speaking, the comparison principle in its usual form
(as for example in the comparison theorem enunciated in the introduction to [2]) applies
to solutions which are classical, so that u and u have to be continuous. In
xt XXX
& A i
fact, 1{¢ we assume merely that € ¢ C°, we know that U, and u,, are continuous, but
not that they are continuously differentiable, and (2.3) may hold only in the sense of K
listributions
To obtain the required result in this case, we observe first that, for any fixed
§ >0 , both u(x+§,t) and u(x,t) satisfy (1.1). Further, ¢' > 0 implies that
ulx+#,0) > ulx,0), and so comparison gives u(x+§,t) > u(x,t) for all x and all t -0
Since this is true for any § > 0 , we must have u (x,t) > 0 for all x and all t > 0. y
X = ;
. - -at 3 :
To obtain strict inequality, set Ve ™ ve , where the constant a is chosen so that §
x> sup £'(u)|. Then v satisfies (perhaps only in the sense of distributions) the ?
we(0,1)
equation §
v, =v._= {a+ £f'(a)lv :
t XX (w)
£
with
v(x,0) >0 , :
4
and if we use the usual Green's function to obtain an integral equation for v (as we do
in (2.4) below for u 1itself), then we see that both integrals on the right of this 1
$
equation are non-negative and the first strictly positive, proving (2.1). N

To prove (2.2), we use the integral representation for u , j.e.

o




T TR

2 y |
- (x=y) /4t - (x-y) /4 (t-s)
2 - . et ¢ v.s)'dy <
(2.4) u(x,t) -i —sjﬁ—o(y)dy . b{t!.‘, ——m—'f.u(,p) dy ds ,
and we obtain an integral representation for u by formal differentiation. To show that

u‘(",t) =0 for t > Q , consider first the derivative of the first integral in (2.4),

which, 1f we neglect unimportant factors, is

2
w - t
(2.5) [ teeyra™ =YY 748 Lvay .
We can suppose that ¢(=) exists since ¢ 1is given monotonic, and we can in fact suppose
that ¢(~) = 0 . (If it is not, merely subtract an appropriate constant from ¢ and note

that from symmetry | ‘x_y).—(x-y) Fe%

-

dy = 0.) If ¢&(~) = 0 , it is a trivial exercise
that (2.5) tends to zero as x + =, since there is a significant contribution to the
integral only when x-y 1s not large, and then ¢(y) is small.

The derivative of the second integral can be dealt with similarly, for we know from
(2.1) that u(y,s) is monotonic in y for each s , and so u(«,s) and fiu(>,s)!
exist. This completes the proof of the lemma.

In view of Lemma 2.1, we are justified in taking as independent variables (u,t) in
place of (x,t). The formal manipulations are easy. If p = U then it is routine to

verify that

?

Ju CoAx RS 3x O ax at at
—=l/ =, ma-E2/X Zup, Say,
ax / ™ at it/ 3 Ix at

/

the differentiations on the left of each equation being of the new variables with respect

to the old, and vice versa on the right of each equation. Hence

xR, &
2 ax o ax n

3 2
3 2 3 3
2.t IR oap Ry

x * RV |
—__32“ - & du 3 _ 3 ( 32“ £(u)) 3R |
Ixat T TR T T i |

and if we differentiate (1.1) with respect to x and substitute the above results, we |
have

2
(2.6) A (puu + ((/p)u) =0 .

«f=




e o e e e

Again, the same remark as in Lemma 2.1 applies, that the differentiation of (1.1 may

be possible only in the sense of distributions. I1f £ « C°, then it is well-known that
u and u are continuous, and (2.6) then holds classically. If we have only
xt XXX
1 .
f C , then (2.6) may hold only in the sense of distributions.
The boundary values p(0,t) = p(l,t) = 0 are an immediate conseguence f Lemma 2.1,

and *the initial function is
plu,0) = 8" (x) = $(u) ,
say, where @ 1is continuous with @(u) » 0 for 0 <u <1

We can collect these facts in the following lemma.

lemma 2.2, lot £ ¢ C'10,1}, with £f(0) = £f(1) = 0 , and suppose that ¢ € C (-«,«

with 0 < ¢ <1 and ¢' > 0 . Then there exists a positive solution of the ifitial

with

(2.8) p(0,t) = p(l,t) = O (t > 0)

a_n_d

(2.9) p(u,0) = ¢(u) > 0 (Q <y x 1)
d(u) = ¢

$ being the function inverse to ¢ .

Further, if we are given a function &(u) that is continuous and positive for

0 <u <1 and such that
1/2 L- -
@100 P s P e e -,
0 172
then there exists a positive solution to the initial value problem (2.7-9).

Remark. By a positive solution p(u,t) of the initial value problem (2.7-9), we mean
that p(u,t) >0 for 0 <u <1 ,t >0 .

Proof. The proof of the first half of the lemma has already been given, it being
remembered that (2.7) may be satisfied only in the sense of distributions. The second

part is proved by observing that, in view of (2.10), the variable

-Q-




k x= [° (o)) tas = yow ,
‘ 1/2

say, has the range (-=,*) as u traverses (0,1), and if we set up the problem

f2.31) u. = v * £(a) (-2 < x < =® £t >0)
L XX

with

(2.12) ulx,0) = ¥ (x) ,

where w'l is the function inverse to Y , then the solution of (2.11-12) leads by the
first part of the theorem to a solution of the initial value problem (2.7-9).
! There is a generalization of Lemma 2.2 which we will require in the sequel.

Lemma 2. 3. Let f ¢ C1[0,1], with f£(0) = £(1) =0, f(u) <0 for wu(>0) sufficiently

close to 0, f(u) >0 for u(<l) sufficiently close to 1. Let A,B (A<B) be such
that

f(u) <0 for u e [0,A], £(u) >0 for u e [B,1].

Suppose that ¢(u) is a given function, continuous and positive for A < u < I and such

that

(A+B)

(2.13) / (o) lau = B (o) tau = = .
A 5 (a+B)

NIT

Then there exist functions a,b € Cl[O,w) with

a nonincreasing, a(0) =A , a >0 unless a =0

b  nondecreasing, b(0) B, b<1l unless b =1,

and a positive solution plu,t) to (2.7) over al(t) <u <b(t), t >0 with

pla(t),t) = p(b(t),t) =0 ,

p(u,0) = ¢(u) for A <u <B.

4 Proof. The proof is based on the same principle as that of Lemma 2.2. We consider the
initial value problem of (1.1) with initial function u(x,0) = ¢(x), where

¢l = f {0(s)} Las .
'E(A‘PB)

In view of (2.13), we have

u(-»,0) = A, u(+=,0) =B .

=10=




I uix,t) 18 the solution to this inttial value problem, then the function

Pl ) = u b)) will satisfy the conclusions of the lemma. ALl that requives any puoot
in that, if

wl=s,t) = aft), wies,t) = b)) |,
then a(t), bit) have the yeguired properties, and this can be deduced most eantly from
the Creen's function fommulation (2.4) for the solution ™us, 1f we take the limit as
X »w in (2.4), we obtain

"t
alt) = A fla(s)ds ,
3y
{

20 that certainly a  ig continuously diffevent iable, Indeed, a s=atisfies the egquation

a' = f(a) , with a() = A |,
Since f(a) <0 for O <a <A, eithey (A = 0 , in which case a(t) = A for all
t -0, or f(A) <0, in which cage a ts inttially strvictly decveasing, and certainly

always nonincreasing.  Yurthey, @) = 0 implies a ~ 0, and since ftia)] = o)

for small a , we can integrate the ineguality a' = 0(a) to see that at) - 0 foy all
t >0 unless A= 0 . The arguments fovx boave similay,

We close this sect{ion with some remarks about travelling front solutions, A travellinag
front solution of (1.1) appears as a stationary solution of (2.7, and 80 satiafies the
egquat ron
2,340 By * B N\\ ge.

which can be integrated to give

2.1%) \ P e
\ 1 )“’(} \

whete ¢ is readily identified as the apeed of the front,  Bguat fons (2 W)Y and (™)

have already been wet tn 52 of (2], whewe they are umed to diacusa the exitetence and
uniqueness of trvavelling fronts,
The boundary conditions to be associated with (2. 1% ave
(2.16) pO) = pdl) = o,
and we are (ntevested only in solutione positive in (O 1), Of course (215 and (210
are invariant under the transformation p @ «p ¢ » =¢ a0 that to any poattive woln
? tion thete (s & negat ive one, corresponding to a travelling famt facing in the oppasite

direct ton and travelling with an egual spesd in the opposite divection. W vecall the

1=




i

main result of (2] conceming the existence and unigqueness of tyavelling front o

Loemma 2.4 (Corollary 2.1 of [2)): Let f satisfy the conditions of lemma 2. 3. Then

there exists at most one solution, positive in (0,1), of the boundary value problem given

by (2.14), (2.16).

Lemma 2.5 (Theorem 2.4 of {2]1): let f ¢ (‘llu,l], with €(0) = (1) = 0 . For some

a ¢ (0,1), suppose that one of the following assertions holds,

a) £ <0 in ), £ >0 in (v, 1), fl f(Wd »> 0

QO
h) £ <0 in WO,0), £ >0 in  (a,1), fl f(Wd « 0
Q

<) £ <0 in O4), £330 in (a,l)

Then there exists one and (by lLemma 2.4) only one noluggg_,_n\y_\‘!_\yg in (©0,1), of (2.14)

and (2.16).

Finally, to deal with functions f which are such as to yield results aimilar to
Theorem C in the introduction, suppose, as always, that ¢ Cl [0,1] with €(0) = (1) =
Thena closed interval 1 ¢ [0,1] is called adminsible if  vanishes at the end-points,

f « 0 near the left end-point, € > 0 near the right end-point, and there exiats a

"

travelling front over 1 . (By a “"travelling front over (o, 8] with wlocity o
we mean a solution of (2.15) with the given ¢ , positive in (o,8) and vanishing at
o and  R.)

If we are given a decomposition of [0,1] into non-overlapping adjacent admiasible
m
intervals [0,1) = u I’ , ordered from left to vight (a0 that the right end-point
Jml -
of li {5 the left end-point of l“‘), and {f <y

front over 1 then such a decomposition {s called minimal if cy 18 nondecreasing in

fa the velocity of the travelling

o
08 |

fya1 = G

lerma 2.6 (Theorem 2.8 of [2]): If there exists a decamposition of (0,11 into

admissible intervala, then there exists a unigue minimal decomposition.

The significance of minimal decomposition (as {n Theorem ¢, where we ave presented
with a minimal decomposition) fa that monotonic solutions of the diffusion equation with

(x,t) as independent variables aplit into a “"stack" of travelling fronts, each with vanage

in one of the intervals of the minimal decomposition and with its distinctive asymptotic

\\.




speed and (at least when the cj are distinct) spreading away from each other; and

correspondingly a positive solution of the diffusion equation with (u,t) as independent
‘ variables will tend to a steady solution that is positive over each interval in the

minimal decomposition but zero at the ends of these intervals. Precise statemsnts of

such results will be found in Theorems 4.3, 4.5. |

l3=




3. Comparison theorems

Lemma 3.1. Let f, A, B satisfy the conditions of Lemma 2.3, and let

2
¥ e C°(A,B) N C(A,B], with

Y(A) = ¥(B) =0, Y >0 in (A.B) ,

(3.1) ¢ + (£/X) >0 in (AW

let A', B' satisfy O < A' <A, B < B' <1, and suppose that &(u) is a given

function, continuous and positive for A' <« u < B' and such that
o\ P S0S _SNCh _SO8t

Laten) .

& -1 o -1

/ (o)) 'du = [ {(d(u)} "du = = |
n %(AWB')

Suppose also that & > ¥ in (A,B).

Then the solution p of the initial value problem corresponding to the iaitial

function ¢, whose existence is guaranteed by Lemma 2.3, has the property that

(3.2) plu,t) > ¥(u) for A <u<B, t>0.
Proof. The initial value problem corresponds to an initial value problem with x, t
as independent variables,
u,_ =-u ~ f(u) =0
XX
with
u(x,0) = ¢(x), say .

Instead of solving this problem, let us consider a sequence of problems

(n) (n) (n) (n)
(3.3) uy "By " fn(u ) Yn(x)ux
with
(3.4) u™ (x,0) = ¢(x)

Here the functions fn are a sequence converging uniformly to f in [0,1], with

f e c2(0,1) and £ (0) = £ (1) = O,
n n n

fn(u) < f(u) for u in (0O, -;' (A4B)) ,
(3.5) 1
f“(u) > f(u) for u in (5 (A+B), 1) ;

the functions Y are a sequence converging uniformly to 0 in (-»,®), with

2 ¥ s
'n' C7 (==, =) and Yo 0.

-14~ |




he inttial value problem (31.3-4) has the usual unique lassical rution, with
n\u (x.t) 0O for all x, t By the same arguments as 1n 820, this omrresponds to a
Ay
in) )
tive solution p of an inttial value problem with u, t as independent variables,
and making the transtormation we find that this is
(n) n) 2, (n) (n) v tn)
I I ) Y} J
t uu n u n
with
(n)
P (u,) ®(u)
in)
he solution 18 classical, since bhoth t and y are sufficiently di.feren
n n
(n)
tiable, and (u,t) 18 pOsSitive over a u-interval that does not decrease as ¢
It ease s
We can then define a sequence of functions Y by the equation
n
(3.0) T+ 2N =¥ N
n non
with
1 l
Y (S () » ¥ (A*D)) = ¢ ,
nd 2 n
where '.v" 18 a sequence of positive numbers with ¢ + 0 as n * «, Then we must
1 1
have " Y S0 long as both are positive; for, considering sufficiently the interval
1
1
(5 (A+B), 1], we see that at the first point at which they meet X meets Y from
below, so that \V“-v\' » 0, ani this contradicts (3.5) and (3.6). 1t therefore
tollows that ¥ 18 positive over (A ,B ), where A A, B < B, and
n n o n n n
¥(A) =¥ (B) =0, Clearly, also, A *A and B * B as n +* =, and Y -¥ 18
n n un n n n
small (and positive) throughout (A .Bn\.
n
In fact, if A is such that f(u) < 0 for u in [0,A+§], for same & > O,
then we can assert that An > A, with a similar result for Rn and B, For we can
rewrite (3.6) as
u ] £ - u ]
4 (¥ ~¥)exp f 2 exp [ £ {
- ? . - - - - -
au Y ! v Y, ! . Oy
L (A+BR) 5 (A+B)
2 2
S0 that the expression in {***} is negative at (A+R) and decreasing an

—
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(=

2 (A'B).Bn). and $0 18 strictly negative as u * Bn. Since, with the assumptions

on f, the exponential 1s bounded as u * Bn. at least 1f n 1s sufficiently large

for B > B - 6§, we cannot have ¥ - ¥ + 0 as u -+ B, and so B <« B,
n n n n

If we continue to suppose temporarily that A and B satisfy these extra assum -

tions, then we can apply the classical maximum principle argument to a comparison
(n)

between p and Vn. Since ® > ¥ in [(A,B] and VY > Vn in lAn,Bn). we know
)
that 1initially p(n) > 'n in (An,an]. Suppose for contradiction that p(" .
f . ' A < < . ' ' '
irst at (uO to) where necessarily An uo Bn Then, at (uO tu)
(n) (n) (n) (n)
3.7 . - " - . - "
3.1 by 2%P Ya' Py e lia 2%
while, from the equations for p(n) ' 'n'
(n) (n),2, (n) (n) 2
0 <« . " / l‘ < 0
Py (p' ) (puu + (fn/p )u) . vn(vn + ((n \vn) <
from (3.7). This gives the required contradiction, and we have
(n)
P fu.t) > ¥ (u) for KX <uc<h, s S I
n W= R -

A limiting process as n * ® then gives the final result of the lemma. For, as
n+®, for any fixed t and uniformly in x,

u(n) u(n)

(x,t) = ulx,t), (x,t) = ux(x,t) '

(n)

as can be seen by turning the equations for u and u into integral form and

comparing them. Pick any Uy with A < uy < B, so that p(uo.t) # 0. Then, dropping

dependence on t, define

X, by u(xo) Ny
(n) (n) (n)
v by u (xo) u, '

x(n) by u(n) (x(n)) PR

o °

The implicit function theorem implies that ‘(n) + %X, &8 n oo, and

P(m (uo) - p(uo) = u’:")(x(n)) - ux(xo) + 0 as n + &

~-16-




If A and B do not satisfy the extra assumptions, we can no longer asscrt that
¢ » Y , but we can then introduce a sequence of initial functions :“ with :I‘ ¥ .
n ] !

and with this extra complication achieve the desired result. The details do not

require elaboration. Note that the introduction of such a sequence of functions |

with &) » ¥ would not be possible if A =0 or B =1, but in this case A and ¥
[

satisfy the extra assumptions and the sequence \’.\l) 1S unnecessary.
1

A second comparison theorem is proved by methods so similar that we content our
selves with 1ts statement.
Lemma 3.2. Let f, A, B, A', B', ¢ be as in Lemma 3.1, but now let ¥(u) be a giver

function, continuous and positive for A < u « B and such that

1
3 (A+B) = B s
f (Y} 'qu = [ (Y1 du = =,

" L (aem)

Suppose also that ¢ > Y in (A,B).

Then if p, q are the solutions of the initial value problem corresponding

respectively to the initial functions ¢, ¥ we have
plu,t) > q(u,t) for a(t) < u < b(t), t >0,

where the functions a, b, introduced in Lemma 2.3, define the interval in which

is positive.

Finally in this section we prove a lemma which discusses the increasing property
of subsolutions.
Lemma 3.3. Let f, A, B be as in Lemma 3.1, and let Y satisfy the conditions of

both Lemma 3.1 and Lemma 3.2. Then if q(u,t) is the solution of the inmitial value

problem corresponding to the initial function Y, it has the property that it 1s,

pointwise in u, a nondecreasing function of t.

If q(u,t) »Q(u), say, as t » «, then Q 1is a positive solution of (2.14)

over some interval (A',B'), where

0 < k' <}, BB €1,

Q(A') = 0, Q(B') = 0 .

e
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Proof. By taking ¢ = ¥ in Lemma 3.1, we immediately obtain
qlu,t) > ¥(u) for A < u < B, € >0 ,

Now use q(u.t.) and Y(u) as comparable initial functions in Lemma 3.2, for any
given t* >0, and we have

qlu,t+t*)> q(u,t) for al(t) < u < blt), t >0,
from which the nondecreasing character of q is apparent. Then q(u,t) must converge
to a limit as t » =, say Q(u), and it is a matter of establishing that Q has the
requisite properties.

We are concerned with ( only where it is positive, i.e. in (A',B'). For any
small fixed ¢ > 0 we know that q(u,t) >0 for A' + 6 <u <B' -6 and t>T,
sav, and in view of the nondecreasing character of q we know further that q is
bounded from zero in this range. Since . = is bounded (for the corresponding solution
with x, t as independent variables) and W ™ W0 it follows that qQ, (and
similarly q, and q““) are bounded and equicontinuous for A' + § <u < B' -~ § as
t + =, (We make the temporary assumption that f € Czlo,l).) Hence L S quu
converge uniformly as t - =, at least through some subsequence, to Q', O, o
respectively. Taking the limit in the equation for q, we see that Q satisfies
(2.14), as required.

If f 1is merely Cllo.ll, then we can construct, by a procedure similar to that
in Lemma 3.1, a sequence of functions fn € C2(O,1]. with corresponding initial func-
tions 'n and solutions q(n) of the initial value problem. Now, for any Tl' T2
exceeding T, where T is chosen as in the previous part of the proof, and for any
U T | in (A' + 4§, B' - §), we have, at least if n is sufficiently large,

2
T

2
(n) (n) (n) (n)
/ [!q‘l AT {q, " + (f /a | - ]dt
'l'1 2 1
k u u
2 2 2
(n) (n),2 1 '
= ! I qtn /{q n)) dujdt = ~ f Y] - g du .
‘l'1 v v, la (u,'l‘z) q (u,'l‘l)

=18«




€ C 0,11 allows us to conclude as before that

faking the limit as n » =, we can drop the sub- and super-scripts n ; turther,

i
glu.t), q (u,t) converge uniformly
u

to Q(u), Q'(u), at least by a subsequence as t =+ =. Hence
4 . /) } - (/) it » 0 as T,,T "
AL Tl L F X hlu /9 \P\\l'L "

But the integrand 18 a non-negative continuous tunction of t. (The non-negativity

- (n)
arises in the limit as n » « fram the same property ftor g , which comes trom

f (n) i h 2
the equation satisfied by q‘ and the fact that it is a nondecreasing function ot

time.) Hence in the limit as t » = we must have

Q' + (f/Q) = constant ,

which gives the required result.




4. Statement of results

We first prove a convergence result with (u,t) as independent variables. The
easiest such result is where there is no guestion about the existence of a travelling
front, i.e. where we assume that f satisfies one or other of the sets of conditions
in Lemma 2.5. We shall in fact assume the conditions (b); the conditions (a) are equi-
valent under the transformation u « l-u , f « -f ; the conditions (c) are only a partic-
ular case of either (a) or (b) except that they allow the possibility fl f(u)du = 0.

As a preliminary step, we prove a theorem which covers conditions (c) an?! also a particular
case of conditions (b)

Theorem 4.1. let f ¢ Cllo,ll with £(0) = £(1) = 0 . For some a € (0,1), suppose that

f <0 in (0,a), and that in (a,1) either £ >0 or f =0 . Let P be the unique

positive solution of (2.14) and (2.16) in (0,1), and let p be the positive solution of

the initial value problem (2.7-9). Then

p(u,t) + P(u) as t >,

uniformly for u ¢ [0,1] .

The proof of Theorem 4.1 is a matter of constructing suitable sub- and super- solutions
for which we have prepared the ground in the comparison theorems of §3 . What we wish
to do is, given the initial value problem (2.7-9) and any interval (A,B) with 0 <A < qa,
@ <B <1, to find a function Y satisfying the conditions on ¥ in Lemma 3.3 and in
addition lying below the initial function ¢ for the initial value problem. For if such
a Y can be found, then the corresponding solution q of the diffusion equation with ¥
as initial function increases with time to a solution Q of (2.14), positive at least
over (A,B), and by Lemma 3.2 the solution p always lies above a . and so in the
limit lies above (or coincident with) Q . (A solution Q of (2.14), positive over (A,B)
and with  Q(A) - Q(B) = 0, is necessarily unique, as can be shown by a repetition of the
argument which prov~s Lemma 2.4.) If the choice of A,B is arbitrary, subject only to
O <A <a, a<B <1, then p(u,t) (in the limit as t -+ «) lies above (or coincident
with) the solution P(u) of (2.14) and (2.16) which is positive for u ¢ (0,1).

Our final task is to find a function ¥ satisfying the conditions of Lemma 3.3.,

but with A =0 , B =1 and the inequality (3.1) reversed. If further ¥ lies

“3 0
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above the initial function & , then theorems comparable to those in i3 show that the
solution :; of the diffusion equation with ¥ as initial function now decreases with
time to a solution of (2.14) that is positive over (0,1}, and so necessarily to P , while
the solution p always lies below :; and so in the limit is, in view of what has already
been said, coincident with P , and this is the required result.

It is interesting that although the construction of such subsolutions g 1s possible
under the conditions of Theorem 4.1, it is not necessarily possible if f satisfies only
the conditons of lemma 2.5. We give an example to prove this in 36. Nevertheless, by use
of a lyapunov functional, we can dispense with the extra assumptions in Theorem 4.1 and

SO prove

y &

Theorem 4.2. let f satisfy one of the sets of conditions in lemma 2.5, Then the con-

clusion of Theorem 4.1. holds.

Where there is no travelling front over (0,1), we have a theorem based on Lemma 2.6.

Theorem 4.3. Suppose that there exists a decomposition of [0,1] into admissible intervals,

and that in each of these intervals, say “x'bx)' f satisfies one or other of the

sets of conditions in Lemma 2.5, with lai'bi] replacing [0,1). Llet the minimal decompo-
m
sition be (0,1} = y I, , and let P) be the unique positive solution of (2.14) over
1=l -
3 with p 1 i : \ - 3 o
i kj vanishing at the end-points of I) If we define F by
P(u) = P_(u) for L
b G ]
then plu,t) = P(a) asg ¢t <+,

uniformly for u ¢ [0,1] .

These results have their interpretation when x,t are taken as independent variables.

Theorem 4.4, Let f satisfy the conditions of Theorem 4.2, or of Theorem 4.3 where the

minimal decomposition consists just of [0,1]) itself and P 1s therefore positive over

(0,1). Let U be the corresponding travelling front solution of (1.1) and let ul(x,t)

be the solution of (1.1-2) corresponding to the solution p(u,t) of (2.7-9). Then there

1
exists a function y € C [0,~), with y'(t) » 0 as t » « , such that

ulx,t) = U{x « ct = y(t)) 0 a8 t >« ,

uniformly in x .,

© IR NI S R




There remains the case of Theorem 4.3 where the minimal decomposition of [0,1] is
into more than one subinterval. To be specific let us suppose that the minimal decomposi-
tion is into two subintervals, [(0,a), [a,l], and let the corresponding travelling fronts
be Ul(x-clt), Uz(x-czt) with ranges (0,a), (a,l) respectively and ¢y ¢, . Then we

have the following result.

Theorem 4.5, Let f satisfy the conditions of Theorem 4.3 with a minimal decomposition

of [(0,1] into [0,a] and (a,l] and let the corresponding travelling fronts be

c,. Then there exist functions Y; € C1 [0,%) ,

Ul(x-clt) and Uz(x-czt) whe re Cy X o

i=1,2, such that y;(t) *0 as t + e« and

u(x,t) - Ul(x-c t - yl(t)) - Uz(x-c t - yz(t)) + a0

1

as t * = , uniformly in x . In the particular case €, = ¢, we can further assert that

2

VZ(t) -wl(t) - @ as t =+ =,
Under more restrictive assumptions on the initial function, we can improve Theorems
4.1-4.5 by giving estimates of the rates of decay to the limit. We leave a precise state-

ment of this to §ll.
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Proof of orem 4.1
In view of the remarks following the statement of Theorem 4.1, we have to prove the
i xistence of a function 7 , satisfying the conditions on ¥ in Lemma 3.3 and with in
| addition - ¢, where ¢ is the given initial function in (2.9). Given any A with
|
} A , we start by choosing a function w ¢ Czlﬂ,x], positive in (A,a) and with
w (A) » and such that there exists a positive constant k with
(5.1) f/w)" 32k in (A,a)
i f i @ tunction w , set w = f/g and choose g so that g' 2k, wAa) ==
g (a) The function w may not be an immediate candidate for Y because we must have
. y + £/%)" 0
l and
but now repiace w by &w , where is a small positive constant. Since w ¢ C2[A.;],
certainly 1) implies that
} (5.3) wl™ + (£/ew)’ >0 in (A;a)
: if 1s small enough, and this also ensures that ew < % . B required ¥ has therefore
i beer found that is positive in (A,a), for any given A with 0 <A < g. We note also
that (sw)' + (£/ew) is a nondecreasing function with a strictly negative limit as u - a,
at least if is sufficiently small. (Recall that g(a) <0 .)
. 3 *
We can in fact find a possible Y over an interval (A,a ), for some a > a .
E This is an immediate consequence of the following lemma.
Lemma 5.1. Let f satisfy the conditions of Theorem 4.1. If a positive continuous
function Y _has been found satisfying (3.1) over (A,a) with ¥(a) = ¥(a) = 0, and if
lim (¥ + (£/9)} <0 , then for a sufficiently close to a (a > a) a positive con-
u-+a * * * L
tinuous function ¥ can be found satisfying (3.1) over (A,a ) with ¥ (A) = ¥ (a ) = 0.

*
Further, we can arrange that V¥ is as small as we please

* * *
in (A,a ), and also VY /¥ as

small as we please at «

The proof of this lemma will be left to the end of the section, but the construction

of a suitable Y over 0 <A <aqg

(A,B), for any A with

1s now almost immediate.

Q3

&<B <,

and any B with




If we take first the case where f > 0 in (a,l), then we can carry out the construc-

Py ! *% * % L
tion of a positive function Y satisfying (3.1) over (a ,B), where u <a , and 1
o t' ‘1
with Y (a**) =Y (B) = 0 . This comes from the argument that we have already carried ”
4
* L
out for (A,a ) and the transformation u ¢ l-u, £ o -f. If the first value of u for 3
- |
* L]
which the functions Y (u) and Y (u) meet is B , say, then the continuous function

bl

Y defined by

oF 0 e e |
¥ =
o { ' i (eB 1

meets all the conditions required. There is the technicality that Y may not be twice

Y

continuously differentiable at B , having a jump increase in 1‘ there, but this does not

invalidate the conclusions (or in any significant way the proof) of Lemma 3.3 and is merely

a reflection of the well-known fact, noted in the introduction to [2], that if we have two
classical subsolutions, then their supremum is also a subsolution.
* * * *
Ifnow £ =0 in (a,l), choose a ,Y from Lemma 5.1, and note that V¥ + (£/Y ) <O
. < % 3 * . *k
at o implies in particular that ¥ ' (a) <0 . Our choice of V¥ has to be made
differently from before, and we ask now that it shall satisfy the requirements that, for
3 ’ *k * * L2 A} Lid
any given B with a <B <1, ¥ (a) =¥ (a), ¥ (¢} < ¥ () <0, ¥ (BY=0,
L2 A
b is negative increasing in (a,B). There is no difficulty in satisfying these require-

*k
ments, and such a V¥ satisfies (3.1) in (o,B) since f = 0 there, and can clearly be

*h
chosen so that ¥ < ¢ in (a,B), Then

*

¥ in (A,a),
hel *w

Y in (a,B)
gives the required VY.

It remains to discuss supersolutions, and this is in essence easier than the discus-

sion of subsolutions because it is largely independent of f . Let g be the solution
of the initial value problem consisting of the equation (2.7), the boundary conditions
a0,8) = v (6), Qe =y, (),

where Y €y, ‘12 (t) are positive decreasing functions of t , and the initial condition

(5.4) a0 = ¥ =x0-(-3)*  ©<u<n,

where K 1is a large positive constant. There is no difficulty in giving existence and
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wigqueness theorems for g , for, with

\

v

(Gee, for example, [5).) 1f we assume that

1
solutions (the extension to f ¢ ¢ (0,1
§1), then the usual arguments show that

by divect substitution

in (0,1) if K is sufficiently large, the size of

!

Y \
v

positive, the problem is not degenerate

0,1} #0 that we can discuss classical

can be carrvied through on the zame lines as in

4

ig a nonincreaszing function of time, since

the given initial function ¢ clearly lies below

g0 p xq for all time. If Y

ted, ¥s Cti

solution P of (2.14) over (0,1), and this

QO as

ig the

z

X depending only on f . Also

R

(

if K is sufficiently large, and

£ e, H\m\\-i

result we want,

Theorem 4.1  ig complete once we have established Lemma 5.1,

Froof of lemma 5.1,

We have

Y
oA (/YY) < =kT

say, in  (A,a). Consider the solution of

(5.5) y' + (&) =0 in
for which

ya=8) = ¥(a=8) ,

[x=8,a]

where § is a positive constant chosen so that ¥

[o=8, 0], (In application this means that

initial value problem. If it is assumed that alrveady

v

= & for the given

integration of (5.5) shows that we can certainly choose & =0 that

#0 chosen we note that (5.5) implies that

we let be the =zolution of
¥ ¥ (f/yn\ = -n in
for which

Yn(l‘-n = Y(a=8) ,

¥

Q0

[o=8, «)

then Yn is pointwise a nonincreasing funct ion of

)5 B

y. >y 52 ¥ #0 long as 1 X k2; and 1f V!
13

v ¢

Y ’(\\) % Ty ey w > a=§, and so y ,(u)

AL
25«

$ f/V =

tends to the positive

Thug the proof of

is as small a= we need 1t to be in
initial function in the

Y@ in (A,al, then direct

Y € &) Wth ¢

in (a=8,a), and so y(a) >0 . 1If

n as M increases, with

)
-¢", say, at

vanighes at or before

a=8

y then

W= o, Finally, vy



RO RE—

can vanish only at o, since if it vanishes first at u_  « 4 . then, as u ¢+ uo

e St i 12

we have y:‘(u) v o,

It follows therefore that there exists some first "o such that ¥ (a) = 0, and we

can choose n(<r\o) sufficiently close to "y that yn(a)/y' (a) is as small as we please.
| n
But

U > a implies (since now f(u) > 0) that y;\(u) :y%(n), and so y" must vanish for

L] *
some a (>a) close to a. Then Vv given by

% ¥ in (A, a=8) '
L]
yn in (a=&,a )

satisfies the conclusions of the lemma.




Nonexistence of subsolutions

The proof of Theorem 4.1 depends on the existence, given any A,B with

a B 1, of a function ¥ that is positive on (A,BR) with Y(A) = ¥ (Rm)
satisfies theac

b N 2T,
and further can be chosen to be arbitrarily small.

While such a function ¥

it f satisfies the conditions of Theorem 4.1, this is no longer necessarily

satisfies merely one or the other of the sets of conditions in Lemma 2.5. It

‘.

of this section to provide an example of this, and to do so we suppose that f

i

the conditions (b) of Lemma 2.5. Thus f < 0 in 0,8, ¥ >0

fl fwdu <0
Q

Now suppose that, in (a,l), f > k on some closed interval I1 . while

another closed interval 1., where I1 lies to the left of 1

3 say. Suppose also we require ¥ <¢, for some ¢ > 0 .
1f the required function § exists, then
q o4 te/y)
is nondecreasing. On I1 »
V' = g= (#/Y) ¢ g~ (kfc)
But if ¥' < -4¢ throughout I1 » we could not have 0 < ¥ < ¢ throughout 1
at some point in Il we must have
g = /el > ~4¢ ,

g > (k/¢) = 4e.

Since g is nondecreasing, this inequality must also hold on 1, where

¥' = g > (k/e) = 4e.

Again, if ¥' > 4¢ throughout 12, we could not have 0 < ¥ < ¢ throughout 1

(kK/v) - 4¢ ;4&‘, (2:_1(/8 »

which is not necessarily true.

=l P

can be found
true if f
is the purpose

satisfies

in (a,1), and

f=0 on

and both are of length

, and so

2° Hence




7. Proof of Theorem 4.2

we will assume conditions (b) of Lemma 2.5.
By the work in the earlier part of Theorem 4.1, including Lemma 5.1, we know that we

-
can construct a function Y , positive in (A,a ), lying below the given initial function

| $, satisfying
-
" e B9 >0 in (A,a ),
L
and with ¥(A) = ¥(a ) = 0 , where A is any number with 0 < A < a, and " is some

-
number with a > a. The solution q of (2.7-9) corresponding to the initial function y 4

E then has the property that it increases with time to the unique positive solution g(\ of
Q" + (£/Q)' =0
L]
over (0,8), with QR(O) = QH(B) =0, for some £ > a . Since ¢ > ¥ , we must have

7.1} lim inf p(u,t) > Q (u).
t » = £ ﬁ

-
Now, for any £ in [a ,1], there exists the corresponding function Q,x' with

Qg * (£/Q) = =<y,

say, and QB(O) = QB(B) = 0 . Further, cq > 0 since

P ewan <o,
0
and cs is a strictly decreasing function of B and Qs(u) pointwise in u a strictly

increasing function of g (except at wu=0). (These results are contained in Lemma 2.. of

-
(21.) Let g be the largest value of B for which (7.1) is valid. Thus
lim inf p(u,t) > Q () ,

t +® 8
but

lim inf p(u,t) ¥ Q. (u)
- s 9

L]
for any B8 > B .

.
If B =1, so that 1lim inf p > P, then we are done. For we can construct a super-
solution exactly as in Theorem 4.1 (we pointed out then that the construction of a super-

solution was essentially independent of f ) and so show that 1lim sup p < P, from which

the final result follows.

L
If 8 < 1 (which we finally prove to be absurd), then we can show first that

(7.2) Hm p(s ,t) =0 .

tr ™
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Suppose for contradiction that (7.2) is not true, and consider the solution of

y' + {f/y) = =0 ¢
with é
. .
y(8 =8) = Q (B -8 , i
8 |
where §  is a positive number chosen so that for some arbitrarily large values of t P {‘
- - v
€7.3) plu,t) »~ Q Jlu) for u in I8 =-28,8 )
B »
It is possible to find such a § because 1lim sup p(f ,t) > 0 implies that, for some
[
-

arbitrarily large values of t , p (8 ,t) is bounded from zero and so has bounded deriva-

tives. Then if c(<c ,) is close to ¢ _ , y is pointwise close to @ , , at least so
8 8 8

long as both are positive, with

.

y(u) 3 Q ,(u) according as u } g =4,
8
-
Further, y vanishes at Yl'Y" say, where Yl >0 but is close to 0 and y, 8 but
-
is close to ' , the strict inequalities being a consequence of the signs of f and an

argument employed in the proof of Lemma 3.1. It is thus clear that, in view of (7.3),

we can choose ¢ sufficiently close to ¢ _  that, for some arbitrarily large ¢t ,
8
-
plu,t) > y(u) for u in [B -268,y.],

while for all t sufficiently large
.

p(u,t) > y(u) for u in lyl.ﬁ =-28] ,

since in this latter range y <Q ., and lim inf p > Q ., . But p >y at any time implies
B8 B8

that subsequently p is never less than the solution of (2.7-9) with y as initial func-
tion, which is a nondecreasing function of time. Hence ~srtainly 3

i inf pla,ty > @ (),
t o Sy

L
which contradicts the definition of @

Thus (7.2) is true.

Tt is now easy to establish that in fact

(7.4) lim p(u,t) = Q « (W) for w in lo,s'l .
t r ‘]

We already know that lim inf p > Q , , and the complementary result lim sup p < Q ,
8 8

follows by considering the function q that is the solution of (2.7) with the boundary

conditions !

-29-




- - -
q(o,t) = vl(t) ¢ QB ,t) = vz(t) '

where Yl (e), Yz (t) are positive decreasing functions of t , and the same initial condi-

-
tion as in (5.4), although now over (0,8 ). As in the discussion in the proof of Theorem

4.1, a is a nonincreasing function of time, converging as t + « to QB' if yl(t),

*
yz(t) + 0 . If further we arrange that yz(t.) + 0 more slowly than p(8 ,t}, then we

will always have p :c-; , and so finally (7.4), as required.

From (7.4), it is immediate that, as t =+ =,

-
(7.5) Bt (f/p) +=-c , <0 in (0,B8) .
B

*
Having established (7.4), we can now obtain the requisite contradiditon t+» 8 <1,
*
and the argument differs depending upon whether or not £ =0 in (8 ,1).

* *
0 in (B ,1), and let Yy be any number with B < y < 1.

Take first the case that f
Consider as an initial function OY , positive over (A,y) for some A with 0 <A <a,
and such that OY(A) =0 and
(7.6) : Oy(u) = QY(u)
for u(<y) sufficiently close to Yy . We shall also insist that OY < 6.

Now the condition (7.6) implies that the corresponding initial function QY(x) (with
x,t as independent variables) is identical for x sufficiently large with some translation
of the travelling front that has range (0,Yy). Since ¢Y(-=°) =A >0 , we can in fact
arrange that OY lies entirely above some translate of the travelling front, and since this
is so initially, the corresponding solution uY (x,t) lies above this translate for all
time.

But also, by the arguments used on p itself, OY < ¢ certainly implies that

lim p_(u,t) = Qg(u) for u in [0,B] ,
e

for some 8 < B' , where pY is the solution of (2.7-9) corresponding to the initial func-

tion 07. Also, as in (7.5),

p
-57-4'pi->-cB in (0,8)

as t + », and this means that, with x,t as independent variables, the corresponding
solution uy(x,t) has the property that it moves with an asymptotic speed cg - More
precisely, as is discussed in more detail in the proof of Theorem 4.4, if x(t) is defined

by
-30-
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u (x{t),t) S,
Y

for any fixed & in  (J,y}, then dx/dt C;i S - c‘_ > ¢ 4 > ¢, and so we have the
T Y
[\

contradiction that (as we saw before) u always lies above a travelling front moving with
Y

speed v‘, while at the same time moving itself with a speed that ultimately exceeds P
-
This completes the discussion when f 0O in I[B ,1). If £ ¢ 0, consider the

functional

1=~
vy = [ (ip -:—‘ M fes)ras)au ,

- 1-¢

e

where ¢ {s asmall positive constant and p is the solution of our initial value problem. Then
3~ 1 P
V' = f et TP * 3 f f (s)ds)du

L. 2
R7=¢ P i

1=« 2
. ,(. p + £ L l;}‘ + [V f(s)as)au
. W P 3 -
B =g l-¢

[T
»n

f 1-¢ 1-¢ g 3
» Uy 2 00 ¥ P f)a)1 " - [ pip 4 5 du

1=¢ 8 =¢ 8-y
In view of the known signs of f , we certainly have Vv >0 . If ¢ {is small, then the
integrated tem at 1-¢ is
%p (pp, *+ £} ,
and since PR, is bounded (being uxx) and p(l-¢,t) is uniformly small for all t if
¢ is small, this integrated tem is certainly small for small ¢
ror large t , and any fixed ¢ , the contribution from the integrated temm at ﬁ.-

is negative and not small, in view of (7.5) and the fact that

1
fﬁ.fdu‘o.

Hence V'(t) 1is bounded above by a negative constant for all t sufficiently large, and
-
this contradicts V > 0. This final contradiction establishes that £ = 1 and completes

the proof of the theorem.




8. Proot of Theorem 4.3

We will restrict ourselves to the case where satisfies the conditions of lLemma

in each of two intervals [0,A], [A,1]1. Extending the result to any number of interval
a straightforward piece of induction. We thus have positive solutions \‘].\‘.» f (2.14)
and (2.16) over (0,A), (A,l) respectively, with wave speeds c].v:, and we have to
sider separately the two cases ¢ Lo, and e, > &,

First, by considering the interval [(0,A] on it<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>